2x^2-450+105=0

Simple and best practice solution for 2x^2-450+105=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-450+105=0 equation:



2x^2-450+105=0
We add all the numbers together, and all the variables
2x^2-345=0
a = 2; b = 0; c = -345;
Δ = b2-4ac
Δ = 02-4·2·(-345)
Δ = 2760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2760}=\sqrt{4*690}=\sqrt{4}*\sqrt{690}=2\sqrt{690}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{690}}{2*2}=\frac{0-2\sqrt{690}}{4} =-\frac{2\sqrt{690}}{4} =-\frac{\sqrt{690}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{690}}{2*2}=\frac{0+2\sqrt{690}}{4} =\frac{2\sqrt{690}}{4} =\frac{\sqrt{690}}{2} $

See similar equations:

| 255=-16t^2 | | 8x-5=3(2x+9) | | 5(t-95)=20 | | 4x+3((-12/9)x+(42/9))=14 | | u-9.1=6.46 | | 7p-8=-22 | | 11k^2-12k-10=0 | | 0.2y+-8=-2 | | y^2-8y=39 | | 10(c+3)=90 | | 8p+13=29 | | 0.2x+-8=-2 | | 2(w-41)=78 | | 2c-6=40 | | 4(y+1)(4y-5)=0 | | 6(y+1/3)+7y=0 | | -6u-36=-2u+48 | | 3x+4.5=14 | | X+x/2+2+4x-8=49 | | 3x-5(x-3)=-6+5x-7 | | P^2-(6÷5)p+9÷25=0 | | P^2-(6÷5)p+9÷5=0 | | 57.50=4.50x-8 | | F(x)=12x+7/6x+3 | | -9.8t^2-19t-2=0 | | N^2+10n+50=0 | | 6(1-5x)=126 | | 3x-6=x+16 | | 1-3x=26/1-3x | | -2(6k-9)=-12(1+k) | | 1/2x-14=29 | | 8x=(7x-6)=13x-14 |

Equations solver categories